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SUMMARY 

A program for the numerical solution of the transport differential equation 
describing the behaviour of a peak on a chromatographic column for an arbitrary 
shape of the equilibrium isotherm and an arbitrary amount injected for one- and 
two-component systems is presented. For one component, the influence of the axial 
dispersion coefficient, the separation coefficient, the curvature of the equilibrium 
isotherm and the apparatus function of the detector were examined. For a two- 
component system, the column overloading for pairs of components with various 
mutual influences was studied. 

INTRODUCTION 

Owing to the increasing availability of larger computers in chemical laboratories 
and the growing mathematical expertise of research chemists, mathematical modelling 
is an expanding technique. An exact mathematical model is a tool that permits both 
a deeper understanding of a process being studied and the optimization of parameters 
that influence this process, together with the prediction of results for arbitrary 
conditions. The development of the model is the first step in this procedure. 

The fundamental mathematical description of the chromatographic process is 
based on the transport differential equation, defined for example by Deyl et al.’ (see 
eqn. 1). Different approaches to the solution of this equation, leading to an analytical 
expression or to a numerical solution, can be found in the literature. The analytical 
solution for a linear equilibrium isotherm and a Dirac-shaped injected peakz*3 is 

regarded as valuable. As follows from the relationship for reduced statistical 
moments4, the axial dispersion coefftcient D has a dominant influence on the width 
and asymmetry of a peak. The analytical solution considering the axial dispersion and 
non-linear equilibrium isotherms, approximated by a second-order polynomial, were 
demonstrated by Jaulman and co-worker$*‘j, including the successful experimental 
verification of the suitable concentration range. The problem of the mathematical 
modelling of non-ideal, non-linear equilibrium chromatography using eqn. 1 was 
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described thoroughly by Smit et al. ‘a The algorithm of the numerical procedure is . 
based on an explicit method for the solution of partial differential equations. 

The numerical solution of eqn. 1 for the boundary conditions corresponding to 
the scale-up of liquid chromatography was given by Cowan et aZs9 for non-equilibrium 
chromatography. They applied a kinetic function describing a first-order reversible 
reaction. 

Guiochon and co-workers”-’ ’ applied a non-traditional approach to the 
solution of eqn. 1. They used the observation that the solution of eqn. 1 is similar to the 
numerical solution of a simpler equation for an ideal model, provided that the 
increments of space and time are suitably chosen (not too small). 

The aim of this work was to construct a computer program for the numerical 
solution of eqn. 1 for an arbitrary case of the equilibrium isotherm and for an arbitrary 
volume and- concentration of sample injected that should also be applicable for 
a two-component system. 

THEORY 

Development of the model 
The model is based on the well known differential equation describing the mass 

balance of the component examined on the column at a point x and time t: 

act% 0 + 1 - & aqx, t) 
D . a2c(x, 0 ack 0 -.-= .- 

at E at ax2 - ’ ax 

where u is the linear velocity of the mobile phase (cm/s), D the axial dispersion 
coefficient (cm2/s), E the void fraction of the bed, C the concentration of the examined 
component in the stationary phase (mol/l of the stationary phase) and C the 
concentration of the examined component in the mobile phase (mol/l). 

The velocity is assumed to be constant within the whole column cross-section 
S (u = Q/S&), where Q is the flow-rate (cm3/s). The coefficient D is also assumed to be 
constant for the given experimental conditions, i.e., for a given temperature, viscosity, 
density and velocity of the mobile phase, sorbent particle size, examined component, 
column diameter, etc. To determine its value, a chromatographic experiment under the 
conditions when the component examined is not retained must be performed and 
evaluated, e.g., by using the analytical solution4. As far as the change in mass with time 
on the sorbent, aC/lat, is concerned, it can be assumed that the whole process is at 
equilibrium and that the functional dependence between C and C [C = C(C), the 
equilibrium isotherm] exists. The experimental procedures that enable this dependence 
to be found have already been described la7 It is obvious that all the parameters . 
characterizing the column, the mobile phase, the examined component and the 
experimental conditions necessary for the solution of eqn. 1, i.e., for the determination 
of the course of the function C(X, t), are easily accessible experimentally. 

Numerical solution 
Replacing the term a@2 by the term (aC/laC)(aC/at) and introducing the 

dimensionless variables 2 = x/L and t” = t/to, where L is the column length and to = 
L/u, eqn. 1 can be written as 
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( 1 + I - E ac aqz, i) = L. a*c(x, i) I ac(.f, i) 
-. E ai Pe az2 - a.2 E 

(2) 

where Pe = uL/D is the Pecklet number. The boundary conditions are given by the 
equations 

P =c_‘ac. 
Pe * aic Z=O,izO 

aC 0. -= 
a2 9 

8= l,iaO 

(3) 

where P is the substance concentration in the input mobile phase. The following initial 
condition is assumed: 

C(f, 0) = 0; XE(O,l) (4) 

To solve eqn. 2, we use the Cranck-Nicolson implicit method”. The interval 
defined by the chromatographic peak is divided into n parts and the substitution of the 
derivations in eqn. 2 is performed in the usual way. For the expression in parentheses 
on the left hand side of eqn. 2 we introduce the symbol c it is obvious that F is 
a function of C. This term can be replaced, in the agreement with the Cranck-Nicolson 
method, by the average: 

Fz+ l/*,(m+l) N _ 

1 
_ ; [F{+‘s(m+‘) + Ft (5) 

where j is related to the time level, i to the spatial coordinate and m is the iterative step 
of the solution of eqn. 2; for m = 0 we choose F;i+l*(‘) = I;I:. 

Eqn. 1 or 2 can also be applied for the description of a chromatographic process 
for a two-component mixture with components 1 and 2. If the equilibrium isotherms 
expressed generally as G = ck (C,, C,), where k = 1 or 2, are assumed, then instead of 
eqn. 2 we have a system of two partial differential equations: 

k,I = 1,2,k # 1 

The value of the derivation aC,JiX, or aC&IC, can be approximated by an equation 
analogous to eqn. 5. For the derivations in eqn. 6 we use the following substitutions: 

ac, c{;l.(m+l) _ c)$ 

-TV At 
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for m = 0 we choose Cr$ L(O) = Ci,i. 
After the substitution of these approximations into eqn. 6, we obtain (in 

agreement with the Cranck-Nicolson method) a system of linear equations for 
unknownC{:‘(k= 1,2;i= 1,2,... n + 1). It is evident that the matrix of this system 
is tridiagonal. 

The concept of the program is as follows. A number of iteration steps are tested 
on the basis of comparison of an integral value corresponding to the amount of 
substances contained in the chromatographic peaks with the amount of substances 
injected on to the column. The difference in these two values must be less than 0.1%. 
After the computation of a concentration profile for each time level, the initial and end 
points of the peak are determined as a concentration C greater than or equal to one 
thousandth of the maximum concentration in the peak. The magnitude of a 
differential step in the coordinate (AZ) is adjusted so that the maximum number of 
points in the peak is 500. The differential step in time (A3 is chosen first to be 0.0001 
and after the peak end has passed the beginning of the column AT = 0.001. 

In the computation, the following equations were used to describe the isotherms: 
one-component system: 

AC 
C=---- 

1 + BC 

two-component system: 

ck = 
A&k 

1 + BlCl + B&’ 
k = 1,2 (11) 

where A and B are constants. 
A rectangular shape was assumed for the input signal, i.e., P in eqn. 3 takes the 

value Co (the concentration of a component determined in an injected sample), and for 
the time greater then the time necessary for the passing of the injected volume, the 
value 0. 

The input data for the program are as follows: the column length L, its diameter 
I.D., the void fraction of the bed E, the mobile phase flow-rate Q, the volume injected 
Vn, the concentration in the injected sample C Ok, the axial dispersion coefficients Dk 
and the equilibrium isotherm parameters Ak and Bk. The program output represents 
the time course of the concentration at the end of the column, Ck (L, t), or at an 
arbitrary point, as the case may be. The parameters used for the characterization of the 
chromatographic peaks, i.e., the statistical moments (from the first to the fourth 
reduced statistical moment), the capacity factor, the plate number, etc., can be 
determined from this concentration course. 
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All the computations were performed using a PDP 1 l/23 microcomputer with 
a 128K memory under the RSX 11 M system. The programs were written in Fortran 
F 77. The computation of the chromatogram for one component took 2-3 h and for 
a two-component system 8-12 h. 

RESULTS AND DISCUSSION 

The accuracy of the program for a one-component system was verified for 
a linear isotherm by comparison with the analytical expression for the statistical 
moments. For L = 25 cm, I.D. = 0.8 cm, E = 0.375, Q = 0.6 ml/min, Vn = 0.1 ml, 
D = 0.0008 &n*/s, A = 1.5 and B = 0.0, the difference was 0.17% for the first, 2.5% 
for the second and 4.2% for the third moments. These differences are regarded as 
negligible. For a non-linear isotherm, the analytical expression reported by Jaulmes et 
~1.~ was used for the comparison. The course of the isotherm described both by eqn. 10 
and by the second-order polynomial (the expression for which the analytical 
relationship was derived) is illustrated in Fig. la. Fig. lb, c and d show that the 
difference in the courses of the peaks obtained by the two methods of computation 
increases with increasing load of the column, i.e., in a region of concentrations such 
that the corresponding isotherms differ. When in the numerical computation the same 
polynomial was used for the description of the equilibrium dependence C N C, the 
courses of the peaks were identical even for greater loadings of the column. 

For a linear isotherm, the well known relationships between the separation 
coefficient Kn (see eqn. 10) (Kn = A for B = 0) and the capacity factor k’ [k’ = 
KD(~ - E)/E] and the linearity between the number of plates N and the column length 
L were verified. In instances the result was in good agreement with theory’. The 
influence of the coefficient D on the width and asymmetry of a chromatographic peak 
is evident from Fig. 2a. The influence of the separation coefficient Z& on the peak 
width is shown in Fig. 2b and demonstrates the course of the amount of substance on 
the column at various times. The time points are chosen so that the leading edges of the 
peaks cover the same distances. Fig. 2b shows that a peak moving more slowly (with 
a highher KD value) is narrower inside the column. The reality that at the column outlet 
it is broader is due to the fact that it flows out more slowly from the column. 

The influence of a non-linear course of the equilibrium isotherm on the peak 
asymmetry and on the position, i.e., on the capacity factor, is evident from Fig. 3. 
Although the non-linearity of the isotherm is not very pronounced (B = +0.2), the 
courses of both peaks (Fig. 3b and c) differ cosiderably from that for a linear isotherm 
(Fig. 3a). 

The program constructed for one component was used for the evaluation of the 
influence of the real apparatus function of the detector (a flow-through radioactivity 
detector designed in our laboratory) (see Fig. 4a) on the peak leaving the column. Fig. 
4b and c compare the peaks before and after the convolution with the detector 
apparatus function. It is evident that for a 250 x 8 mm I.D. column an injection 
volume of 100 ,~l, the influence of the detector is negligible. 

On the basis of the results obtained, we conclude that the program for the 
numerical solution of eqn. 1 for one component is correct and can be used for 
experimental verification. 

This program constructed for one component formed the basis of the 
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Fig. 2. Computations for linear chromatography: L = 25 cm, I.D. = 0.4 cm, E = 0.375, Q = 0.2 ml/mh, 
V, = 0.02 ml, Co = I .O. (a) Influence of the axial dispersion coefftcient: D = 1.5 . 10-“mz/s (broken line), 
D = 5 . IO-“ cm’/s (solid line), Ko = 0.5. (b) Influence of the separation coefticient: KD = 0.5 (solid line), 
KD = 2.0(broken line), D = 5. 10-4m2/s. 
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0. 

Fig. 3. Influence of the shape of the isotherm on the shape of the peak for the following conditions: L = 25 
cm,I.D. = 0.4cm,~ = 0.37&Q = 0,2ml/min, V. =0.02ml,C0 = 1.O.D = 1.5~10-4cm2/s.(a)A = 1.0, 
B = 0.0; (b) A = 1.0, B = 0.2; (c) ‘4 = 1.0, B = -0.2. 

construction of a program for two components. As an equilibrium function we used 
eqn. 11, which represents the Langmuir isotherm 1g*20 for positive values of the 
coefficients B. For negative coefficients B, only the range of concentrations when the 
denominator of eqn. 11 is positive has a physical sense. 

The aim of the numerical experiments was to verify the accuracy of the program 
on the basis of the influence of column overloading on the shape and resolution of 
peaks for various equilibrium isotherms given by eqn. 11, i.e., for various values of 
B under the same conditions (see Figs. 5, 6 and 7). 

With negative values of B and considering the limited definition range, 
overloading may be realized by increasing the volume injected and not the 
concentration. Therefore, the results of both methods of overloading were compared 
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Fig. 4. Comparison of the chromatographic peak before convolution (broken line) and after convolution 
(solid line) with the apparatus function of a flow-through radioactivity detector. Conditions used: L = 25 
cm, E = 0.375, Q = 0.6 ml/min, C, = 1 .O, A = 6.0, B = 0.0. (a) Shape of the apparatus function; (b) I.D. = 
0.4 cm, Vo = 0.02 ml, D = 1.5 . IO-" cm*/s; (c) I.D. = 0.8 cm, Vo = 0.1 ml, D = 8 . 1Oe4 cm*/s. 
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Fig. 5. Computation of a chromatogram for the two-component system (see eqn. 6). L = 25 cm, I.D. = 0.8 
cm, E = 0.375, Q = 0.6 mI/min, DI = D2 = 5. 10-4cm’/s, A, = 1.6, B1 = 0.3, A2 = 1.96, & = 0.3. (a) 
Vn = 0.1 ml, Co1 = Coz = 1.0; (b) V, = 0.5 ml, C,, = Co, = 1.0; (c) V, = 0.1 ml, C,, = C,, = 5.0. The 
individual components are marked by the broken line. 
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first for the case when the definition range of eqn. 1 I was unlimited (both coefficients 
B were positive). As follows from Fig. 5b and c, the difference is not pronounced; for 
the higher concentrations the retention times are slightly lower and the resolution 
higher. 
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Fig. 6. Computation of a chromatogram for the two-component system. A, = 1.6, B1 = -0.3, A2 = 1.96, 

Bz = -0.3. (a) V, = 0.1 ml, Co, = Co, = 1.0; (b) V, = 5.0 ml, Co1 = Co2 = 1.0. Other conditions as in 
Fig. 5. 
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The chromatograms in Figs. 5-7 demonstrate that in all instances, when the 
amount injected is increased, the retention times tR are shifted to lower or higher values 
depending on whether 3 is positive or negative. From the standpoint of the resolution, 
the most disadvantageous case is when B1 < 0 and B2 > 0. To judge the effect of the 
mutual influence of the first and second components, let us compare the retention 
times of one component (for a given value of B) with the retention times of the same 
component but for another value of B of the second component. For example, the 
retention times of the first component t RI on the chromatograms in Fig. 7a and b are 
lower than tR1 in Fig. 6a and b, but tRZ on the same chromatograms (Fig. 7a and b) are 
higher than tR2 in Fig. 5a and b. Similarly, we can compare Fig. 7c and d with Fig. 5a 
and b for the first component and with Fig. 6a and b for the second component. All 
these comparisons show the influence of the second component (or its corresponding 
B value) on the retention time of the competitive component. 

The program may be used for a real system on the condition that the real values E, 
Dk, Ck = Ck(Cl, C,) and possibly the shape of the input signal have been determined. 

CONCLUSION 

The various methods for modelling of the chromatographic process can be 
found in the literature21-24. We decided to solve eqn. 1 using the procedure that, 
according to Guiochon and Katti’s review dealing on preparative chromatography25, 
belongs to the group of solutions that are available for the quasi-ideal problem, i.e., the 
kinetics of mass transfer must be rapid and independent of the concentration, and must 
be accounted for by an apparent diffusion coefficient. The advantage of this approach 
consists in its applicability to multi-component systems, whereas the approach based 
on the real kinetic function of mass transfer and a non-linear isotherm is not applicable 
to the study of the separation between two compounds. 

In subsequent work we shall examine the experimental verification of the 
numerical solution discussed above. In addition, we shall compare the results with 
those obtained following an approach similar to the work of Ghodbane and 
Guiochonr3 and with the data obtained in different ways (mixed ceils model) 
developed in our laboratory24. 
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